Raspberry PI case printing

Introduction

In my previous post I hd mentioned that having got the 3D printer ready to go again, I planned to print the case for my Raspberry PI. After viewing some of the cases on Thingiverse I located one that had been designed with four wall mounts.

In my initial attempt to export the image to the SD card, everything had seemed to work correctly, however the MakerBot was unable to view it. So during my lunch hour today I removed the file from the SD card and started over.

Exporting the case to SD card

My first step was to load the top portion of the case’s .stl file into ReplicatorG. Using the 3D rendering of the image I was able to align the case top so that it was positioned in the middle of the axis. Once this was complete I then exported the file to Gcode. Finally I edited the Gcode so the heat of the base plate would be 120 degrees F.

I then followed the steps above for the bottom portion of the case.

The images were now ready to export to SD format. Using the option on the menu I exported directly to my SD card, and also shortened the rather long names of the files in case this contributed to the MakerBot not being able to view them.

Ejecting the SD card I was now ready to give printing another try.

Printing the case

Loading the SD card into the MakerBot I could now view the files on the menu and so set the top to print. I left the printer to do its thing and checked back in on it a couple of hours later. As you can see in the picture below, the printing was successful:

Raspberry PI case

Raspberry PI case

Raspberry PI top

Raspberry PI top

Raspberry PI bottom section

Raspberry PI case

With the two pieces of the case complete my next job was to clean the lattice off the objects and try the Raspberry PI out to see if it fit.

Here you can see the case clipped together:

Completed case

Completed case

I would recommend for the next steps having some kind of tray to put the case on, an X-acto knife and some sand-paper or a tool to smooth off the plastic (the later being something I didn’t have at hand at home, so I’ll need a trip to Home Depot).

Most objects are printed onto a lattice base, so your first job will be to remove this.

As you can see below, the lattice that the objects are printed on comes off pretty easily, you can snap this off with your hand right after you take the object out of the MakerBot.

Lattice

Lattice

As a note: One thing I have noticed about the quality of the print – in general – is that the objects made on the MakerBot have a lot of rough portions that need to be cut or smoothed off. This takes a little while so with my RPI case I set some  time aside this evening to work on cleaning it up.

Here you can see the bottom portion of the RPI case:

Case bottom

Case bottom

Outside of the RPI case

Outside of the RPI case

Using an X-acto knife I gently removed the top layer on the case to reveal the better resolution layer below. However this is a tedious process and even with the X-acto knife didn’t give me the result I wanted. It is also messy so having a tray to catch the off-cuts was handy. At this point some sandpaper would have been useful. Since I didn’t have this at home, doing the final sanding off  had to wait. Once I do this I also plan to spray paint the case, which will be the subject of another post.

Having done a best of a job as possible cleaning things up I now tried placing the RPI inside the bottom section. The RPI fitted in here no problem. I now tried to place the top onto the RPI and close the case. At this point I noticed that one of the plastic lips inside the case was catching on the RPI near the SD card port. Taking the X-acto knife I cut this portion off and now the case closed perfectly.

You can see the final result here:

RPI in the case

RPI in the case

So as you can see above, we have our first attempt at a printed Raspberry PI case complete. Once I finish off the aesthetics of the case, I will then be able to attach it to the wall and wire it up to my home network. I still have some configuration to complete on the RPI in the area of HTSQL installation which I will be blogging about soon.

All in all the process has been a great learning experience and given me a number of avenues to investigate, including how to ensure a better resolution and quality of print on future 3D objects.

It’s also been the first project that has been successfully completed on our co-op’s MakerBot leading to us now feeling comfortable with everyone jumping in and printing their own creations.

With regards to cases, for the Arduino thermostat, I plan to design my own housing unit in Blender, which will also be the subject of a future blog posting.

Finally, if anyone has any suggestions of improving the print quality, please feel free to comment below!

Raspberry PI case, soldering irons and other such matters

Introduction

This post will be a round up of what has been happening on the intelligent heating project.

In my last post I detailed how we had encountered a problem printing an object on the MakerBot and how this had resulted in some slight damage to the build plate.

Thankfully the damage wasn’t critical. This week we were able to re-cover the build plate with the film (which is a real awkward task and takes a couple of attempts to get right) and start printing object again!

The picture below shows the MakerBot back in action:

MakerBot

MakerBot

Raspberry PI (RPI) case

Now that the printer is back in action I did some research online for Raspberry PI cases. The thingiverse website has a selection of RPI cases however I found one in particular that matched my requirements, as it came with a mounting bracket for screwing the case to the wall.

Since my RPI will be sitting inside a small closet where our electrical box is located, this seemed perfect.

You can see the case here:

http://www.thingiverse.com/thing:25363

I downloaded the STL files and then loaded them into ReplicatorG. First of all I built the Gcode for the base section of the case, and then exported to flash card format.

I now encountered a small problem, the case wasn’t visible on the flash card via the MakerBot menu. I’m not immediately sure what happened here, so I’ll be trying a fresh export on Monday and will try reloading it. Providing this works, then the first version of the case will be printed next week.

I’ll be photoing and uploading the results to the blog.

Soldering Iron

At the end of the month I plan on ordering some components for the Arduino from Adafruit, this will consist of a temperature sensor and a touch screen for the thermostat. I’ve not settled on which products I’m going with yet, but once this is decided I’ll be adding a post to the Thermostat thread details the specs and costs.

Of course in order to attach the components to the Arduino it helps to have a soldering iron. So today I picked one up from Home Depot. It cost around $15 and some extra electrical solder was around $9:

Soldering Iron

Soldering Iron

and

Solder

Solder

So I am now all set to start connecting up the components for my Arduino thermostat.

Raspberry PI and TV

In my earlier blog I had mentioned my plan to install HTSQL on the RPI. I have still not gotten around to doing this as a result of the equipment I am missing. I will need a cable to connect the video out up to a spare monitor  I have ready. My other option is of course to buy another monitor with a HDMI output on it. However I have had some problems with HDMI jack not working on the RPI so I will need to investigate this further.

Conclusion

So the above details where the project is currently at. Expect further updates over the week.

Update on MakerBot

Problems with Printing

We had recently encountered some problems with our MakerBot, and items being printed peeling away from the base. This then resulted in the strepstruder knocking the object out of alignment and messing up the print.

In response to this I adjusted the heat on the MakerBot so the base was now heating up to 115 Degrees F.

The results for this can be seen below:

Black and white cube

Black and white cube

The box above printed nicely in two colors and the print was also clean with few rough edges to be filed down afterwards.

Disaster strikes

However shortly after printing this object we had a major problem.

The build plate must have been a fraction too high as the next object we printed resulted in the strepstruder being jammed into the platform. Unfortunately nobody was watching the Makerbot at the time so it was a few minutes until we saw the problem and canceled the print.

The damage can be seen below:

Strepstrudder damage

Strepstrudder damage

We cleaned off the plastic and also removed the film from the build plate. At this point I also noticed that the black plastic spool was jammed slightly. Having fixed the jam I re-ran the diagnostics on the MakerBot and the plastic seemed to be exiting the extruder as expected, so it looks like there was no long-term damage to the printer.

Our next steps will be to recover the build plate and try another print on Monday morning. As a result of this we will also be instituting a policy that anyone using the MakerBot has to be present for the first 5 minutes of the print to ensure that there are no jams, and the plate is level and hasn’t been knocked out of alignment, thus resulting in damage to the printer.